

R Users Guide

to accompany

Statistics: Unlocking the Power of Data
by Lock, Lock, Lock, Lock, and Lock

R Users Guide - 2 Statistics: Unlocking the Power of Data

About R

R is a freely available environment for statistical computing. R works with a command-line interface,

meaning you type in commands telling R what to do. For more information and to download R, visit

cran.r-project.org.

Using This Manual

A “Quick Reference Guide” at the end of this manual summarizes all the commands you will need

to know for this course by chapter. More detailed information and examples are given for each

chapter. If this is your first exposure to R, we recommend reading through the detailed chapter

descriptions as you come to each chapter in the book.

Commands are given using color coding. Code in red represents commands and punctuation that

always need to be entered exactly as is. Code in blue represents names that will change depending

on the context of the problem (such as dataset names and variable names). Text in green following #

is either optional code or comments. This often includes optional arguments that you may want to

include with a function, but do not always need. In R anything following a # is read as a comment,

and is not actually evaluated

For example, the command mean is used to compute the mean of a set of numbers. The information

for this command is given in this manual as

mean(y) #for missing data: na.rm=TRUE

Whenever you are computing a mean, you always need to type the parts in red, mean(). Whatever

you type inside the parentheses (the code in blue) will depend on what you have called the set of

numbers you want to compute the mean of, so if you want to calculate the mean body mass index for

data stored in a variable called BMI , you would type mean(BMI). The code in green represents an

optional argument needed only if there are missing values. If there were missing (NA) values in BMI,

you would compute the mean with mean(BMI, na.rm=TRUE).

http://cran.r-project.org/

R Users Guide - 3 Statistics: Unlocking the Power of Data

Getting Started with R

Entering Commands

Commands can be entered directly into the R console (the window that opens when you start R),

following the red > prompt, and sent to the computer by pressing enter. For example, typing 1 + 2 and

pressing enter will output the result 3:

> 1+2

[1] 3

Your entered code always follows the > prompt, and output always follows a number in square

brackets. Each command should take its own line of code, or else a line of code should be continued

with { } (see examples in Chapters 3 and 4).

It is possible to press enter before the line of code is completed, and often R will recognize this. For

example, if you were to type 1 + but then press enter before typing 2, R knows that 1+ by itself

doesn’t make any sense, so prompts for you to continue the line with a + sign. At this point you could

continue the line by pressing 2 then enter. This commonly occurs if you forget to close parentheses or

brackets. If you keep pressing enter and keep seeing a + sign rather than the regular > prompt that

allows you to type new code, and if you can’t figure out why, often the easiest option is to simply press

ESC, which will get you back to the normal > prompt and allow you to enter a new line of code.

Capitalization and punctuation need to be exact in R, but spacing doesn’t matter. If you get errors

when entering code, you may want to check for these common mistakes:

- Did you start your line of code with a fresh prompt (>)? If not, press ESC.

- Are your capitalization and punctuation correct?

- Are all your parentheses and brackets closed? For every forward (, {, or [, make sure there is a

corresponding backwards), }, or].

R Script

Rather than entering commands into the console directly however, we recommend creating and using

an R Script, basically a text editor for your code. A new script can be created by File -> New Script.

Code (commands) can be typed here, and then entered into the console in one of three ways:

1) Copy the code in the R script and paste in the console

2) Right-click on a line or highlighted group of lines and choose “Run line or selection”

3) Place your cursor on a line or highlight a group of lines and press CTRL+R.

Using a separate R script is nice because you can save only the code that works, making it easy to

rerun and edit in the future, as opposed to the R console in which you would also have to save all your

mistakes and all the output. We recommend always saving your R Scripts so you have the commands

easily accessible and editable for future use.

R Users Guide - 4 Statistics: Unlocking the Power of Data

Basic Commands

Basic Arithmetic

Addition

Subtraction

Multiplication

Division

Exponentiation

+

–

*

/

^

Other

Naming objects

Open help for a command

Creating a set of numbers

=

?

c(1, 2, 3)

The basic arithmetic commands are pretty straightforward. For example, 1 + (2*3) would return 7.

You can also name the result of any command with a name of your choosing with =. For example, if

you type

x = 3*4

you are setting x to equal the result of 3*4, or equivalently setting x = 12. If you type in x to the

console now you will see 12 as the output:

> x

[1] 12

The choice of x here is completely arbitrary, and you could have named it whatever you wanted.

Naming objects and arithmetic works not just with numbers, but with more complex objects like

variables. To get a little fancier, suppose you have variables called Weight (measured in pounds) and

Height (measured in inches), and want to create a new variable for body mass index, which you

decide to name BMI. You can do this with the following code:

BMI = Weight/(Height^2) * 703

If you want to create your own variable or set of numbers, you can collect numbers together into one

object with c() and the numbers separated by commas inside the parentheses. For example, to

create your own variable Weight out of the weights 125, 160, 183, and 137, you would type

Weight = c(125, 160, 183, 137)

To get more information on any built-in R commands, simply type ? followed by the command name,

and this will bring up a separate help page.

R Users Guide - 5 Statistics: Unlocking the Power of Data

Using R in Chapter 1

Loading Data

Load a dataset from a .csv file

Load a dataset from the textbook

Type in a variable

dataname = read.csv(file.choose())

data(dataname)

variablename = c(3.2, 3.3, 3.1)

Viewing Data

See the whole dataset, dataname

See the first 6 rows of a dataset

Finding the number of cases and variables

Get information about a textbook dataset

dataname

head(dataname)

dim(dataname)

?dataname

Variables

Seeing the variable names in a dataset

Extract a variable from a dataset

names(dataname)

dataname$variablename

Random Sample

Generate n random integers up to max

sample(1:max, n)

Loading Data

There are three different ways you may want to get data in R: loading data from a spreadsheet, loading

datasets from the textbook, and manually typing in your own data.

Loading Data from a Spreadsheet

1. From your spreadsheet editing program (Excel, Google Docs, etc.) save your spreadsheet as a

.csv (Comma Separated Values) file on your computer.

2. In R, decide on a name for your dataset. Usually a short name relevant to the particular dataset

is best. For now, let’s assume you picked the name mydata.

3. Type mydata = read.csv(file.chose()) and press enter. A window will pop up

asking you to locate the relevant .csv file on your computer.

Loading Data from the Textbook

1. Load the Lock5Data package1. Click on Packages at the top, then Install Packages. A window

titled “CRAN mirror” will pop up – click on whatever location is closest to you and click OK.

A window titled “Packages” will pop up – scroll down to click on Lock5Data, then click OK.

(Note: You only have to do this the first time you use textbook data.)

2. Load this package by typing library(Lock5Data). You’ll have to do this every time you

start a new R session.

3. Find the name of the dataset you want to access as it’s written in bold in the textbook, for

example, AllCountries, and type data(AllCountries).

Manually Typing Data

If you survey people in your class asking for GPA, you could create a new variable called gpa (or

whatever you want to call it) by entering the values as follows:

gpa = c(2.9, 3.0, 3.6, 3.2, 3.9, 3.4, 2.3, 2.8)

1 If you can’t install packages, you can access the datasets from the textbook as .csv files at www.wiley.com/college/lock

http://www.wiley.com/college/lock

R Users Guide - 6 Statistics: Unlocking the Power of Data

Viewing Data

Once you have a dataset loaded, you will want to explore different basic aspects of it, such as the

structure, the names of the variables, and the number of cases. Let’s work with the AllCountries data,

loaded above. To view the dataset, simply type the dataset name

AllCountries

If there are a lot of cases, this may be awkward to see. Often it is useful to just view the first 6 rows of

a dataset to a quick feel for the structure:

head(AllCountries)

If you want to find the number of cases and variables, type

dim(AllCountries)

The first number is the number of rows (cases) and the second is the number of columns (variables).

If the dataset comes from the textbook, you can type ? followed by the data name to pull up

information about the data:

?AllCountries

Variables

If you want to see just the variable names, type

names(AllCountries)

If you want to extract a particular variable from a dataset, for example, Population, type

AllCountries$Population

If you will be doing a lot with one dataset, sometimes it gets cumbersome to always type the dataset

name and a dollar sign before each variable name. To avoid this, you can type

attach(AllCountries)

Now you can access variables from the AllCountries data simply by typing the variable names directly.

If you choose to use this option however, just remember to detach the dataset when you are done:

detach(AllCountries)

R Users Guide - 7 Statistics: Unlocking the Power of Data

Taking a Random Sample

While you can sample directly from a list of cases in R, a more general way to generate a random

sample is to randomly generate n (the sample size) numbers between 1 and the number of cases you

want to sample from (max):

sample(1:max, n)

Once you have these random numbers, you can use this with either a dataset or a variable to create

your random sample using square brackets.

A vector of numbers in square brackets after a variable says to only look at cases corresponding to the

given numbers. For example, with our gpa variable, if we want only the 1st and 3rd cases, we could

type:

gpa = c(2.9, 3.0, 3.6, 3.2, 3.9, 3.4, 2.3, 2.8)

gpa[c(1,3)]

to get a new variable of just 2.9 and 3.6. For example, if we wanted to take a random sample of 10

countries from all the 213 countries in the world, because Country within the dataset AllCountries lists

the country names identifying each case, we could use

AllCountries$Country[sample(1:213, 10)]

This is useful if you have the case identifiers for the whole population, but not the data.

If you want to take a random sample from an entire dataset, indicate which rows and which columns

you want within the square brackets, separated by a comma:

data[rows, columns]

So to take a random sample of 10 countries along with all the associated variables in the AllCountries

dataset, we could use

AllCountries[sample(1:213, 10),]

Notice the only difference when sampling a dataset versus a single column is the comma after the

sample() command.

Randomized Experiment

If you want to randomize a sample into two different treatment groups for a randomized experiment,

you can take a random sample from the whole sample to be the treatment group, and the rest of the

sample would then go in the control group.

R Users Guide - 8 Statistics: Unlocking the Power of Data

Using R in Chapter 2

One Categorical (x)

Frequency table

Proportion in group A

Pie chart

Bar chart

table(x)

mean(x == "A")

pie(table(x))

barplot(table(x))

Two Categorical (x1, x2)

Two-way table

Difference in proportions

 of x1 in group A by x2

Segmented bar chart

Side-by-side bar chart

table(x1, x2)

diff(by(x1,x2,function(o) mean(o=="A")))

barplot(table(x1, x2), legend=TRUE)

barplot(table(x1,x2),legend=TRUE,beside=TRUE)

One Quantitative (y)

Mean

Median

Standard deviation

5-Number summary

Percentile

Histogram

Boxplot

mean(y) #for missing data: na.rm=TRUE

median(y) #for missing data: na.rm=TRUE

sd(y) #for missing data: na.rm=TRUE

summary(y)

quantile(y, 0.05)

hist(y)

boxplot(y) #ylab="y-axis label"

One Quantitative (y) and

One Categorical (x)

Means by group

Difference in means

S.D. by group

Side-by-side boxplots

by(y, x, mean) #for missing data: na.rm=TRUE

diff(by(y, x, mean))

by(y, x, sd)

boxplot(y ~ x) #ylab="y-axis label"

Two Quantitative (y1, y2)

Scatterplot

Correlation

Linear Regression

plot(y1, y2)

cor(y1, y2) #missing data: use="complete.obs"

lm(response ~ explanatory)

Time Series Plot

y1 = time variable

plot(y1, y2, type="o")

Additional Variables

Scatterplot of y1, y2

Point size: y3

Points colored by x1

Point symbol: x2

Broken down by: x3

#uses ggplot2 package (much easier)

install.packages(ggplot2)

library(ggplot2)

qplot(y1, y2, size=y3, colour=x1, shape=x2,

facet=~x3)

Example – Student Survey

To illustrate these commands, we’ll explore the StudentSurvey data. We load the data, attach it, and

use head() to see what the data looks like:

library(Lock5Data)

data(StudentSurvey)

attach(StudentSurvey)

R Users Guide - 9 Statistics: Unlocking the Power of Data

head(StudentSurvey)

The following are commands we could use to explore each of the following variables or pairs of

variables. They are not the only commands we could use, but illustrate some possibilities.

Award preferences (one categorical variable):

table(Award)

barplot(table(Award))

Award preferences by gender (two categorical variables):

table(Award, Gender)

barplot(table(Award, Gender), legend=TRUE)

Pulse rate (one quantitative variable):

summary(Pulse)

hist(Pulse)

Hours of exercise per week by award preference (one quantitative and one categorical variable):

by(Pulse, Award, mean)

boxplot(Pulse~Award)

Pulse rate and SAT score (two quantitative variables):

plot(Pulse, SAT)

cor(Pulse, SAT)

lm(SAT~Pulse)

Missing Data

You may notice that if you try to do some of these commands on certain variables, you get NA for a

result. This often means there are some missing values in the data, which R codes as NA. To calculate

the average avoiding missing values, use the argument na.rm=TRUE:

mean(Exercise, na.rm=TRUE)

by(Exercise, Award, mean, na.rm=TRUE)

For correlation a similar problem exists, but the fix just takes a different argument. To calculate the

correlation between SAT score and GPA (for which there are missing values), use

cor(SAT, GPA, use = "complete.obs")

More Details for Plots

If you want to get a bit fancier, you can add axis labels and titles to your plots. This is especially

useful for including units, or if your variable names are not self-explanatory. You can specify the x-

R Users Guide - 10 Statistics: Unlocking the Power of Data

axis label with xlab, the y-axis label with ylab, and a title for the plot with main. For example,

below would produce a labeled scatterplot of height versus weight:

plot(Height, Weight, xlab = "Height (in inches)", ylab = "Weight

(pounds)", main = "Scatterplot")

These optional labeling arguments work for any graph produced.

Additional Variables (Section 2.7)

Let’s add additional variables to the basic scatterplot. This can be done in base R, but is a bit tricky

(particularly to get the legend correct), so we instead use the ggplot2 package. We first need to install

and load the package:

install.packages(ggplot2)

library(ggplot2)

Below we can create a scatterplot of Height and Weight, with points colored by Gender, sized by

hours of Exercise, symbol determined by Award, and broken down by Year:

qplot(Height, Weight, colour=Gender, shape=Award, size=Exercise,

facets=~Year, data=StudentSurvey)

Data over Time

Data over time can be plotted just as you would plot a normal scatterplot, but with the extra argument

type = “o” for overlaid points and a line connecting them, or type = “l” for just the line.

The dataset CarbonDioxide gives Carbon Dioxide concentration in the atmosphere every year from

1960-2010. We can create a time series plot with

data(CarbonDioxide) #loads the data

attach(CarbonDioxide)

plot(Year, CO2, type="o")

R Users Guide - 11 Statistics: Unlocking the Power of Data

Using R in Chapter 3

Generating a

Bootstrap Distribution

b = 10000 #number of bootstrap statistics

boot.dist = rep(NA, b)

for (i in 1:b) {

 boot.sample = sample(n, replace=TRUE)

 boot.dist[i] = statistic(y[boot.sample])

}

Using a

Bootstrap Distribution

hist(boot.dist)

quantile(boot.dist, c(0.025, 0.975))

sd(boot.dist)

To generate a bootstrap confidence interval we first learn how to generate one bootstrap statistic, then

how to repeat this procedure many times to generate an entire bootstrap distribution, and then how to

use the bootstrap distribution to calculate a confidence interval.

One Bootstrap Statistic

To generate a bootstrap distribution we first have to be comfortable generating a single bootstrap

statistic. To do this, we sample with replacement from the original sample, using a sample size equal

to the original sample, and then compute the statistic of interest on this bootstrap sample. We create

boot.sample to be a random sample of n (the sample size) integers between 1 and n, sampled with

replacement:

boot.sample = sample(n, replace=TRUE)

For example,

sample(4, replace = TRUE)

could yield 2, 2, 1, 4. To use this to get a bootstrap sample from our variable, we use square

brackets, [] to select those cases from the variable. For example, if we wanted to create a bootstrap

sample of Atlanta commute times (Time), which has 500 values originally, we would use

boot.sample = sample(500, replace=TRUE)

Time[boot.sample]

Lastly, we compute our statistic of interest on this bootstrap sample. For example, for the mean

Atlanta commute time we would use

mean(Time[boot.sample])

If we instead were doing a correlation between Distance and Time, we would use

cor(Distance[boot.sample], Time[boot.sample])

R Users Guide - 12 Statistics: Unlocking the Power of Data

For Loop

A for loop is a convenient way to repeat a procedure many times, without having to type it over and

over again. The code

for (i in 1:5) { }

tells the computer to do whatever is inside of the brackets 5 times, once with i = 1, once with i = 2, etc.

up to i = 5. We use for (i in 1:b), where b is the number of bootstrap statistics we want

(usually 10,000 is sufficient).

We want to save the bootstrap statistic from every iteration of the for loop (for every i). To do this we

first need to create a new object to save these results in:

boot.dist = rep(NA, b)

This creates a set of b NA values which will become the bootstrap distribution. Within the for loop,

boot.dist[i] = statistic(boot.y, boot.x)

tells each iteration of the for loop to fill in the ith value of boot.dist with the bootstrap statistic from that

iteration. When the for loop has finished, boot.dist has b different bootstrap statistics.

Before continuing, let's look at a simple for loop example:

result = rep(NA, 5)

for (i in 1:5) {

 result[i] = i + 2

}

After the for loop runs, result would be 3, 4, 5, 6, 7, because the for loop when i = 1 would

fill in the 1st value of result with i + 2 = 1 + 2 = 3, when i = 2 it would fill in the 2nd value of result with

i + 2 = 2 + 2 = 4, etc., up to i = 5.

Using the Bootstrap Distribution

Once you have the bootstrap distribution, you should graph it to make sure it is approximately

symmetric. Assuming it is, you have two options for computing a 95% confidence interval:

1. Compute the standard error of the statistic by taking the standard deviation of the bootstrap

statistics and then use statistic 2SE.

2. Find the endpoints that correspond to the middle 95% of the bootstrap distribution. For the

middle 95%, we want the 2.5% in each tail, so the 0.025 and 0.975 percentiles (for other

confidence levels, just replace 0.025 and 0.975 with the appropriate percentiles):

quantile(boot.dist, c(0.025, 0.975))

R Users Guide - 13 Statistics: Unlocking the Power of Data

Example: Bootstrap CI for a Correlation

Let's compute a 95% confidence interval for the correlation between Distance and Time for

AtlantaCommutes. Load and attach the data:

library(Lock5Data)

data(CommuteAtlanta)

attach(CommuteAtlanta)

Create a bootstrap distribution:

b = 10000

boot.dist = rep(NA, b)

for (i in 1:b) {

 boot.sample = sample(500, replace=TRUE)

 boot.dist[i] = cor(Distance[boot.sample], Time[boot.sample])

}

Graph the bootstrap distribution to check for symmetry:

hist(boot.dist)

There is possibly a slight left skew, but nothing too concerning.

Create a 95% confidence interval using the standard error:

se = sd(boot.dist)

cor(Distance, Time) - 2*se

cor(Distance, Time) + 2*se

Although it's redundant to do both, for illustration we also use the percentile method:

quantile(boot.dist, c(0.025, 0.975))

R Users Guide - 14 Statistics: Unlocking the Power of Data

Using R in Chapter 4

Generating a

Randomization Distribution

b = 10000 #number of randomization statistics

rand.dist = rep(NA, b)

for (i in 1:b) rand.dist[i] = rand.statistic

Randomization Statistic:

Proportion

Mean

Shuffle one variable (x)

rbinom(1, n, 0.5) #change 0.5 to null value

boot.samp = sample(n, replace=TRUE)

mean(y[boot.samp] + shift) #shift is amount to

shift original data to make null true

sample(x) #randomly permutes x

Finding p-value:

Proportion statistic

Proportion ≥ statistic

#double for two-sided Ha

mean(rand.dist <= statistic)

mean(rand.dist >= statistic)

The general idea with the for loop is the same as we learned in Chapter 3 with bootstrapping,

although if there is only one line of code within the for loop, we put it on one line for simplicity. For

b iterations we calculate a randomization statistic, each time storing it as a value in rand.dist.

Shuffling One Variable

In many hypothesis tests, we generate a randomization sample by shuffling one of the two variables

(the explanatory variable if the data comes from a randomized experiment). For example, suppose we

want to do a hypothesis test to see if caffeine increases finger tapping rate, based on Data 4.6.

We load and attach the dataset CaffeineTaps, and see that the explanatory variable is Group and the

response variable is Taps. To randomly shuffle the explanatory variable, we again use sample. If

you sample a variable without specifying the sample size and without replacement, R randomly

shuffles (permutes) the variable. So to shuffle Group we use

sample(Group)

For this problem we want to calculate the difference in mean tap rate for the shuffled groups:

diff(by(Tap, sample(Group), mean))

If we instead wanted a difference in proportions or correlation, we would calculate the statistic as

always, just using the shuffled group instead of the actual group variable.

Now that we know how to calculate one randomization statistic, and know how to do a for loop from

Chapter 3, creating a randomization distribution is easy!

b = 10000

rand.dist = rep(NA, b)

for (i in 1:b) rand.dist[i] = diff(by(Tap, sample(Group), mean))

R Users Guide - 15 Statistics: Unlocking the Power of Data

To compute a p-value from this randomization distribution, we want the proportion of randomization

statistics above the observed statistic (because we want to see if caffeine increases tap rate):

originalstat = diff(by(Tap, Group, mean))

mean(rand.dist >= originalstat)

Test for a Single Variable

Doing tests for a single variable is a bit different, because there is not an explanatory variable to

shuffle. Here are two examples, one for a proportion, and one for a mean.

1. Dogs and Owners. 16 out of 25 dogs were correctly paired with their owners, is this evidence

that the true proportion is greater than 0.5? In R, you can simulate flipping 25 coins and

counting the number of heads with

rbinom(1, 25, 0.5)

(for null proportions other than 0.5, just change the 0.5 above accordingly). Therefore, we can

create a randomization distribution with

b = 10000

rand.dist = rep(NA, b)

for (i in 1:b) rand.dist[i] = rbinom(1, 25, 0.5)

The alternative is upper-tailed, so we compute a p-value as the proportion above 16/25:

mean(rand.dist >= 16/25)

2. Body Temperature. Is a sample mean of 98.26F based on 50 people evidence that the true

average body temperature in the population differs from 98.6F? To answer this we create a

randomization distribution by bootstrapping from a sample that has been shifted to make the

null true, so we add 0.34 to each value. We can create the corresponding randomization

distribution with

b = 10000

rand.dist = rep(NA, b)

NullTemp=BodyTemp+0.34

for (i in 1:b) {

 boot.samp = sample(50, replace=TRUE)

 rand.dist[i] = mean(NullTemp[boot.samp])

}

In this case we have a two-sided Ha, so calculate the p-value as the proportion in the smaller tail

beyond the observed statistic (in this case because 98.26 is less than 98.6), and double it:

2*mean(rand.dist <= 98.26)

R Users Guide - 16 Statistics: Unlocking the Power of Data

Using R in Chapter 5

Standard Normal Distribution:

Find a percentile

Find the area below z

Find the area above z

qnorm(0.10)

pnorm(z)

pnorm(z, lower.tail=FALSE)

Any Normal Distribution

Find a percentile

Find the area below x

Find the area above x

qnorm(0.10,mean,stddev)

pnorm(x,mean,stddev)

pnorm(x,mean,stddev,lower.tail=FALSE)

Example 1: Find z* for a 90% confidence interval.

We want the middle 90% of the normal distribution, so want 5% in each tail, so need to find the 5th and

95th percentiles:

qnorm(0.05)

qnorm(0.95)

Example 2: Find a p-value when z = 1.5, and the alternative is upper-tailed.

Because Ha is upper tailed, we find the area in the standard normal distribution above 1.5:

pnorm(1.5, lower.tail=FALSE)

Example 3: Find the area below 60 for a normal distribution with mean 75 and

standard deviation 12.

pnorm(60,75,12)

R Users Guide - 17 Statistics: Unlocking the Power of Data

Using R in Chapter 6

Normal Distribution:

Find a percentile

Find the area below z

Find the area above z

qnorm(0.10)

pnorm(z)

pnorm(z, lower.tail=FALSE)

t-Distribution:

Find a percentile

Find the area below t

Find the area above t

qt(0.10, df)

pt(t, df, lower.tail=TRUE)

pt(t, df, lower.tail=FALSE)

Inference for Proportions:

Single proportion

Difference in proportions

prop.test(count, n, p0) #delete p0 for intervals

prop.test(c(count1, count2), c(n1, n2))

Inference for Means:

Single mean

Difference in means

t.test(y, mu = mu0) #delete mu0 for intervals

t.test(y ~ x)

Using prop.test or t.test

For p-values

For confidence intervals

#alternative = "two.sided", "less", "greater"

#conf.level = 0.95 or desired confidence level

There are two ways of using R to compute confidence intervals and p-values using the normal and t-

distributions:

1. Use the formulas in the book and qnorm, qt, pnorm, and pt.

2. Use prop.test and t.test on the raw data without using any formulas

The two methods should give very similar answers, but may not match exactly because prop.test

and t.test do things slightly more complicated than what you have learned (continuity correction

for proportions, and a more complicated algorithm for degrees of freedom for difference in means).

The commands prop.test and t.test give both confidence intervals and p-values. For

confidence intervals, the default level is 95%, but other levels can be specified with conf.level.

For p-values, the default is a two-tailed test, but the alternative can be changed by specifying either

alternative = "less" or alternative = "greater".

Using Option 1 directly parallels the code in Chapter 5, so we refer you to the Chapter 5 examples.

Here we just illustrate the use of prop.test and t.test.

Example 1: In a recent survey of 800 Quebec residents, 224 thought that Quebec should separate

from Canada. Give a 90% confidence interval for the proportion of Quebecers who would like Quebec

to separate from Canada.

prop.test(224, 800, conf.level=0.90)

Example 2: Test whether caffeine increases tap rate (based on CaffeineTaps data).

t.test(Tap~Group, alternative = "greater")

R Users Guide - 18 Statistics: Unlocking the Power of Data

Using R in Chapter 7

Chi-Square Distribution

Find the area above 2

pchisq(chisquare, df, lower.tail=FALSE)

Chi-Square Test

Goodness-of-fit

Test for association

chisq.test(table(x)) #if null probabilities not

equal, use p = c(p1, p2, p3) to specify

chisq.test(table(x1, x2))

Randomization Test

Goodness-of-fit

Test for association

chisq.test(table(x), simulate.p.value=TRUE)

chisq.test(table(x1, x2), simulate.p.value=TRUE)

Option 1: Use formula to calculate chi-square statistic and use pchisq

If we get 2 = 3.1 and the degrees of freedom are 2, we would calculate the p-value with

pchisq(3.1, 2, lower.tail=FALSE)

Option 2: Use chisq.test on raw data

1. Goodness of Fit. Use the data in APMultipleChoice to see if all five choices (A, B, C, D, E)

are equally likely:

chisq.test(table(Answer))

2. Test for Association. Use the data in StudentSurvey to see if type of award preference is

associated with gender:

chisq.test(table(Award, Gender))

Randomization Test

If the expected counts within any cell are too small, you should not use the chi-square distribution, but

instead do a randomization test. If you use chisq.test with small expected counts cell, R helps

you out by giving a warning message saying the chi-square approximation may be incorrect.

If the sample sizes are too small to use a chi-squared distribution, you can do a randomization test with

the optional argument simulate.p.value within the command chisq.test. This tells R to

calculate the p-value by simulating the distribution of the 2 statistic, assuming the null is true, rather

than compare it to the theoretical chi-square distribution.

For example, for a randomization test for an association between Award and Gender:

chisq.test(table(Award, Gender), simulate.p.value=TRUE)

R Users Guide - 19 Statistics: Unlocking the Power of Data

Using R in Chapter 8

F Distribution

Find the area above F

pf(F, df, lower.tail=FALSE)

Analysis of Variance summary(aov(y ~ x))

Pairwise Comparisons pairwise.t.test(y, x, p.adjust="none")

As with t-tests and chi-square tests, one option is to calculate the F-statistic by hand, and then compare

it to the F distribution using pf. The (much easier) option is to use R's built in analysis of variable

function, aov.

Analysis of Variance

Let's test whether the average number of ants that feed on a sandwich differs by type of filling, using

data from SandwichAnts (Data 8.1).

We can calculate the sample means in each group, visualize the data, and check the conditions for

ANOVA with

by(Ants, Filling, mean)

boxplot(Ants ~ Filling)

by(Ants, Filling, sd)

table(Filling)

In the sample, we see that the most ants came to the ham & pickles sandwich, and the least to the

vegemite. The sample standard deviations within each group are close enough to proceed. The sample

sizes are very small, so we should proceed with caution, but looking at the boxplots we see the data

appear to be at least symmetrically distributed within each group, without any outliers, so we proceed.

We can calculate the entire ANOVA table directly with

summary(aov(Ants ~ Filling))

Pairwise Comparisons

Finding the overall ANOVA significant, we may want to test individual pairwise comparisons. We

can test all pairwise comparisons with

pairwise.t.test(Ants, Filling, p.adjust = "none")

This gives us the p-value corresponding to each pairwise comparison. The optional argument

p.adjust = "none" tells R to give the raw p-values and not adjust for multiple comparisons. If

you leave off this argument R will increase the p-values to account for multiple comparisons, but the

details here are beyond the scope of this text.

R Users Guide - 20 Statistics: Unlocking the Power of Data

Using R in Chapter 9

Simple Linear Regression

Plot the data

Fit the model

Give model output

Add regression line to plot

plot(y ~ x) # y is the response (vertical)

lm(y ~ x) # y is the response)

summary(model)

abline(model)

Inference for Correlation cor.test(x, y)

#alternative = "two.sided", "less", "greater"

Prediction

Calculate predicted values

Calculate confidence intervals

Calculate prediction intervals

Prediction for new data

predict(model)

predict(model, interval = "confidence")

predict(model, interval = "prediction")

predict(model, as.data.frame(cbind(x=1)))

Let's load and attach the data from RestaurantTips to regress Tip on Bill. Before doing regression,

we should plot the data to make sure using simple linear regression is reasonable:

plot(Tip~Bill) #Note: plot(Bill, Tip) does the same

The trend appears to be approximately linear. There are a few unusually large tips, but no extreme

outliers, and variability appears to be constant as Bill increases, so we proceed. We fit the simple

linear regression model, saving it under the name mod (short for model - you can call it anything you

want). Once we fit the model, we use summary to see the output:

mod = lm(Tip ~ Bill)

summary(mod)

Results relevant to the intercept are in the (Intercept) row and results relevant to the slope are in the

Bill (the explanatory variable) row. The estimate column gives the estimated coefficients, the std.

error column gives the standard error for these estimates, the t value is simply estimate/SE, and the p-

value is the result of a hypothesis test testing whether that coefficient is significantly different from 0.

We also see the standard error of the error as "Residual standard error" and R2 as "Multiple R-

squared". The last line of the regression output gives details relevant to the ANOVA table: the F-

statistic, degrees of freedom, and p-value.

After creating a plot, we can add the regression line to see how the line fits the data:

abline(mod)

 Suppose a waitress at this bistro is about to deliver a $20 bill, and wants to predict her tip. She can get

a predicted value and 95% (this is the default level, change with level) prediction interval with

predict(mod,as.data.frame(cbind(Bill = 20)),interval = "prediction")

Lastly, we can do inference for the correlation between Bill and Tip:

cor.test(Bill, Tip)

R Users Guide - 21 Statistics: Unlocking the Power of Data

Using R in Chapter 10

Multiple Regression

Fit the model

Give model output

lm(y ~ x1 + x2)

summary(model)

Residuals

Calculate residuals

Residual plot

Histogram of residuals

model$residuals

plot(predict(model), model$residuals)

hist(model$residuals)

Prediction

Calculate predicted values

Calculate confidence intervals

Calculate prediction intervals

Prediction for new data

predict(model)

predict(model, interval = "confidence")

predict(model, interval = "prediction")

predict(model,as.data.frame(cbind(x1=1,x2=3)))

Multiple Regression Model

We'll continue the RestaurantTips example, but include additional explanatory variables: number in

party (Guests), and whether or not they pay with a credit card (Credit = 1 for yes, 0 for no).

We fit the multiple regression model with all three explanatory variables, call it tip.mod, and

summarize the model:

tip.mod = lm(Tip ~ Bill + Guests + Credit)

summarize(tip.mod)

This output should look very similar to the output from Chapter 9, except now there is a row

corresponding to each explanatory variable.

Conditions

To check the conditions, we need to calculate residuals, make a residual versus fitted values plot, and

make a histogram of the residuals:

plot(tip.mod$fit, tip.mod$residuals)

hist(tip.mod$residuals)

Categorical Variables

While Credit was already coded with 0/1 here, this is not necessary for R. You can include any

explanatory variable in a multiple regression model, and R will automatically create corresponding 0/1

variables. For example, if you were to include gender coded as male/female, R would create a variable

GenderMale that is 1 for males and 0 for females. The only thing you should not do is include a

categorical variable with more than two levels that are all coded with numbers, because R will treat

this as a quantitative variable.

R Users Guide - 22 Statistics: Unlocking the Power of Data

R Commands: Quick Reference Sheet

CHAPTER 1
Loading Data

Load a dataset from a .csv file

Load a dataset from the textbook

Type in a variable

dataname = read.csv(file.choose())

data(dataname)

variablename = c(3.2, 3.3, 3.1)

Viewing Data

See the whole dataset, dataname

See the first 6 rows of a dataset

Finding the number of cases and variables

dataname

head(dataname)

dim(dataname)

Variables

Seeing the variable names in a dataset

Extract a variable from a dataset

names(dataname)

dataname$variablename

Random Sample

Generate n random integers up to max

sample(1:max, n)

CHAPTER 2
One Categorical (x)

Frequency table

Proportion in group A

Pie chart

Bar chart

table(x)

mean(x == “A”)

pie(table(x))

barplot(table(x))

Two Categorical (x1, x2)

Two-way table

Difference in proportions

 of x1 in group A by x2

Segmented bar chart

Side-by-side bar chartt

table(x1, x2)

diff(by(mean(x1,x2,function(o) mean(o==“A”)))

barplot(table(x1, x2), legend=TRUE)

barplot(table(x1,x2),legend=TRUE,beside=TRUE)

One Quantitative (y)

Mean

Median

Standard deviation

5-Number summary

Percentile

Histogram

Boxplot

mean(y) #for missing data: na.rm=TRUE

median(y) #for missing data: na.rm=TRUE

sd(y) #for missing data: na.rm=TRUE

summary(y)

quantile(y, 0.05)

hist(y)

boxplot(y) #ylab="y-axis label"

One Quantitative (y) and

One Categorical (x)

Means by group

Difference in means

S.D. by group

Side-by-side boxplots

by(y, x, mean) #for missing data: na.rm=TRUE

diff(by(y, x, mean))

by(y, x, sd)

boxplot(y ~ x) #ylab="y-axis label"

Two Quantitative (y1, y2)

Scatterplot

Correlation

Linear Regression

plot(y1, y2)

cor(y1, y2) #missing data: use="complete.obs"

lm(response ~ explanatory)

R Users Guide - 23 Statistics: Unlocking the Power of Data

Time Series Plot

y1 = time variable

plot(y1, y2, type="o")

Additional Variables

Scatterplot of y1, y2

Point size: y3

Points colored by x1

Point symbol: x2

Broken down by: x3

#uses ggplot2 package (much easier)

install.packages(ggplot2)

library(ggplot2)

qplot(y1, y2, size=y3, colour=x1, shape=x2,

facet=~x3)

CHAPTER 3
Generating a

Bootstrap Distribution

b = 10000 #number of bootstrap statistics

boot.dist = rep(NA, b)

for (i in 1:b) {

 boot.sample = sample(n, replace=TRUE)

 boot.dist[i] = statistic(y[boot.sample])

}

Using a

Bootstrap Distribution

hist(boot.dist)

quantile(boot.dist, c(0.025, 0.975))

sd(boot.dist)

CHAPTER 4
Generating a

Randomization Distribution

b = 10000 #number of randomization statistics

rand.dist = rep(NA, b)

for (i in 1:b) rand.dist[i] = rand.statistic

Randomization Statistic:

Proportion

Mean

Shuffle one variable (x)

rbinom(1, n, 0.5) #change 0.5 to null value

boot.samp = sample(n, replace=TRUE)

mean(y[boot.samp] + shift) #shift is amount to

shift original data to make null true

sample(x) #randomly permutes x

Finding p-value:

Proportion statistic

Proportion ≥ statistic

#double for two-sided Ha

mean(rand.dist <= statistic)

mean(rand.dist >= statistic)

CHAPTER 5
Standard Normal Distribution:

Find a percentile

Find the area below z

Find the area above z

qnorm(0.10)

pnorm(z)

pnorm(z, lower.tail=FALSE)

CHAPTER 6
t-Distribution:

Find a percentile

Find the area below t

Find the area above t

qt(0.10, df)

pt(t, df)

pt(t, df, lower.tail=FALSE)

Inference for Proportions:

R Users Guide - 24 Statistics: Unlocking the Power of Data

Single proportion

Difference in proportions

prop.test(count, n, p0) #delete p0 for intervals

prop.test(c(count1, count2), c(n1, n2))

Inference for Means:

Single mean

Difference in means

t.test(y, mu = mu0) #delete mu0 for intervals

t.test(y ~ x)

Using prop.test or t.test

For p-values

For confidence intervals

#alternative = "two.sided", "less", "greater"

#conf.level = 0.95 or desired confidence level

CHAPTER 7
Chi-Square Distribution

Find the area above 2

pchisq(chisquare, df, lower.tail=FALSE)

Chi-Square Test

Goodness-of-fit

Test for association

chisq.test(table(x)) #if null probabilities not

equal, use p = c(p1, p2, p3) to specify

chisq.test(table(x1, x2))

Randomization Test

Goodness-of-fit

Test for association

chisq.test(table(x), simulate.p.value=TRUE)

chisq.test(table(x1, x2), simulate.p.value=TRUE)

CHAPTER 8
F Distribution

Find the area above F

pf(F, df, lower.tail=FALSE)

Analysis of Variance summary(aov(y ~ x))

Pairwise Comparisons pairwise.t.test(y, x, p.adjust="none")

CHAPTER 9
Simple Linear Regression

Plot the data

Fit the model

Give model output

Add regression line to plot

plot(y ~ x) # y is the response (vertical)

lm(y ~ x) # y is the response)

summary(model)

abline(model)

Inference for Correlation cor.test(x, y)

#alternative = "two.sided", "less", "greater"

Prediction

Calculate predicted values

Calculate confidence intervals

Calculate prediction intervals

Prediction for new data

predict(model)

predict(model, interval = "confidence")

predict(model, interval = "prediction")

predict(model, as.data.frame(cbind(x=1)))

CHAPTER 10
Multiple Regression

Fit the model

Give model output

lm(y ~ x1 + x2)

summary(model)

Residuals

Calculate residuals

model$residuals

plot(predict(model), model$residuals)

R Users Guide - 25 Statistics: Unlocking the Power of Data

Residual plot

Histogram of residuals

hist(model$residuals)

Prediction

Calculate predicted values

Calculate confidence intervals

Calculate prediction intervals

Prediction for new data

predict(model)

predict(model, interval = "confidence")

predict(model, interval = "prediction")

predict(model,as.data.frame(cbind(x1=1,x2=3)))

