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About R 
 

R is a freely available environment for statistical computing.  R works with a command-line interface, 

meaning you type in commands telling R what to do.  For more information and to download R, visit 

cran.r-project.org. 

 

 

 

Using This Manual 
 

A “Quick Reference Guide” at the end of this manual summarizes all the commands you will need 

to know for this course by chapter.  More detailed information and examples are given for each 

chapter.   If this is your first exposure to R, we recommend reading through the detailed chapter 

descriptions as you come to each chapter in the book. 

 

Commands are given using color coding.  Code in red represents commands and punctuation that 

always need to be entered exactly as is.  Code in blue represents names that will change depending 

on the context of the problem (such as dataset names and variable names).  Text in green following # 

is either optional code or comments.  This often includes optional arguments that you may want to 

include with a function, but do not always need.    In R anything following a # is read as a comment, 

and is not actually evaluated 

 

For example, the command mean is used to compute the mean of a set of numbers.  The information 

for this command is given in this manual as 

 
mean(y)    #for missing data: na.rm=TRUE 

Whenever you are computing a mean, you always need to type the parts in red, mean( ).  Whatever 

you type inside the parentheses (the code in blue) will depend on what you have called the set of 

numbers you want to compute the mean of, so if you want to calculate the mean body mass index for 

data stored in a variable called BMI , you would type mean(BMI).  The code in green represents an 

optional argument needed only if there are missing values.  If there were missing (NA) values in BMI, 

you would compute the mean with mean(BMI, na.rm=TRUE). 

 

 

  

http://cran.r-project.org/
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Getting Started with R 
 

Entering Commands 

 

Commands can be entered directly into the R console (the window that opens when you start R), 

following the red > prompt, and sent to the computer by pressing enter.  For example, typing 1 + 2 and 

pressing enter will output the result 3: 

 
> 1+2 

[1] 3 

 

Your entered code always follows the > prompt, and output always follows a number in square 

brackets.  Each command should take its own line of code, or else a line of code should be continued 

with { } (see examples in Chapters 3 and 4). 

 

It is possible to press enter before the line of code is completed, and often R will recognize this.  For 

example, if you were to type 1 + but then press enter before typing 2, R knows that 1+ by itself 

doesn’t make any sense, so prompts for you to continue the line with a + sign.  At this point you could 

continue the line by pressing 2 then enter.  This commonly occurs if you forget to close parentheses or 

brackets.  If you keep pressing enter and keep seeing a + sign rather than the regular > prompt that 

allows you to type new code, and if you can’t figure out why, often the easiest option is to simply press 

ESC, which will get you back to the normal > prompt and allow you to enter a new line of code. 

 

Capitalization and punctuation need to be exact in R, but spacing doesn’t matter.  If you get errors 

when entering code, you may want to check for these common mistakes: 

- Did you start your line of code with a fresh prompt (>)?  If not, press ESC. 

- Are your capitalization and punctuation correct?   

- Are all your parentheses and brackets closed?  For every forward (, {, or [, make sure there is a 

corresponding backwards ), }, or ]. 

 

R Script 

 

Rather than entering commands into the console directly however, we recommend creating and using 

an R Script, basically a text editor for your code.  A new script can be created by File -> New Script.  

Code (commands) can be typed here, and then entered into the console in one of three ways: 

 

1) Copy the code in the R script and paste in the console 

2) Right-click on a line or highlighted group of lines and choose “Run line or selection” 

3) Place your cursor on a line or highlight a group of lines and press CTRL+R.  

 

Using a separate R script is nice because you can save only the code that works, making it easy to 

rerun and edit in the future, as opposed to the R console in which you would also have to save all your 

mistakes and all the output.  We recommend always saving your R Scripts so you have the commands 

easily accessible and editable for future use. 

  



R Users Guide - 4  Statistics: Unlocking the Power of Data 

 

Basic Commands 

 

Basic Arithmetic 

Addition 

Subtraction 

Multiplication 

Division 

Exponentiation 

 

+ 

– 

* 

/ 

^ 

Other 

Naming objects 

Open help for a command 

Creating a set of numbers 

 

= 

? 

c(1, 2, 3) 

 

The basic arithmetic commands are pretty straightforward.  For example, 1 + (2*3) would return 7.   

 

You can also name the result of any command with a name of your choosing with =.  For example, if 

you type 

 
x = 3*4 

 

you are setting x to equal the result of 3*4, or equivalently setting x = 12.  If you type in x to the 

console now you will see 12 as the output: 

 
> x 

[1] 12 

 

The choice of x here is completely arbitrary, and you could have named it whatever you wanted.   

 

Naming objects and arithmetic works not just with numbers, but with more complex objects like 

variables.  To get a little fancier, suppose you have variables called Weight (measured in pounds) and 

Height (measured in inches), and want to create a new variable for body mass index, which you 

decide to name BMI.  You can do this with the following code: 

 
BMI = Weight/(Height^2) * 703 

 

If you want to create your own variable or set of numbers, you can collect numbers together into one 

object with c( ) and the numbers separated by commas inside the parentheses.  For example, to 

create your own variable Weight out of the weights 125, 160, 183, and 137, you would type 

 
Weight = c(125, 160, 183, 137) 

 

To get more information on any built-in R commands, simply type ? followed by the command name, 

and this will bring up a separate help page. 
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Using R in Chapter 1 
 

Loading Data 

Load a dataset from a .csv file 

Load a dataset from the textbook 

Type in a variable 

 

dataname = read.csv(file.choose()) 

data(dataname) 

variablename = c(3.2, 3.3, 3.1) 

Viewing Data 

See the whole dataset, dataname 

See the first 6 rows of a dataset 

Finding the number of cases and variables 

Get information about a textbook dataset 

 

dataname 

head(dataname) 

dim(dataname) 

?dataname 

Variables 

Seeing the variable names in a dataset 

Extract a variable from a dataset 

 

names(dataname) 

dataname$variablename 

Random Sample 

Generate n random integers up to max 

 

sample(1:max, n) 

 

Loading Data 
 

There are three different ways you may want to get data in R: loading data from a spreadsheet, loading 

datasets from the textbook, and manually typing in your own data.  
  
Loading Data from a Spreadsheet 
 

1. From your spreadsheet editing program (Excel, Google Docs, etc.) save your spreadsheet as a 

.csv (Comma Separated Values) file on your computer.   

2. In R, decide on a name for your dataset.  Usually a short name relevant to the particular dataset 

is best.  For now, let’s assume you picked the name mydata. 

3. Type mydata = read.csv(file.chose()) and press enter.  A window will pop up 

asking you to locate the relevant .csv file on your computer.  

  

Loading Data from the Textbook 

1. Load the Lock5Data package1.  Click on Packages at the top, then Install Packages.  A window 

titled “CRAN mirror” will pop up – click on whatever location is closest to you and click OK.  

A window titled “Packages” will pop up – scroll down to click on Lock5Data, then click OK.  

(Note: You only have to do this the first time you use textbook data.) 

2. Load this package by typing library(Lock5Data).  You’ll have to do this every time you 

start a new R session. 

3. Find the name of the dataset you want to access as it’s written in bold in the textbook, for 

example, AllCountries, and type data(AllCountries).   

 

Manually Typing Data 
 

If you survey people in your class asking for GPA, you could create a new variable called gpa (or 

whatever you want to call it) by entering the values as follows: 

 
gpa = c(2.9, 3.0, 3.6, 3.2, 3.9, 3.4, 2.3, 2.8)  
                                                           
1 If you can’t install packages, you can access the datasets from the textbook as .csv files at www.wiley.com/college/lock  

http://www.wiley.com/college/lock
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Viewing Data 

 
Once you have a dataset loaded, you will want to explore different basic aspects of it, such as the 

structure, the names of the variables, and the number of cases.  Let’s work with the AllCountries data, 

loaded above.  To view the dataset, simply type the dataset name 

 
AllCountries 

 

If there are a lot of cases, this may be awkward to see.  Often it is useful to just view the first 6 rows of 

a dataset to a quick feel for the structure: 

 
head(AllCountries) 

 

If you want to find the number of cases and variables, type 

 
dim(AllCountries) 

 

The first number is the number of rows (cases) and the second is the number of columns (variables). 

 

If the dataset comes from the textbook, you can type ? followed by the data name to pull up 

information about the data: 

 
?AllCountries 

 

 

Variables 
 

If you want to see just the variable names, type 

 
names(AllCountries) 

 

If you want to extract a particular variable from a dataset, for example, Population, type 

 
AllCountries$Population 

 

If you will be doing a lot with one dataset, sometimes it gets cumbersome to always type the dataset 

name and a dollar sign before each variable name.  To avoid this, you can type 

 
attach(AllCountries) 

 

Now you can access variables from the AllCountries data simply by typing the variable names directly.  

If you choose to use this option however, just remember to detach the dataset when you are done: 

 
detach(AllCountries) 

 

 

 

  



R Users Guide - 7  Statistics: Unlocking the Power of Data 

Taking a Random Sample 

 
While you can sample directly from a list of cases in R, a more general way to generate a random 

sample is to randomly generate n (the sample size) numbers between 1 and the number of cases you 

want to sample from (max): 

 
sample(1:max, n) 

 

Once you have these random numbers, you can use this with either a dataset or a variable to create 

your random sample using square brackets.   

 

A vector of numbers in square brackets after a variable says to only look at cases corresponding to the 

given numbers.  For example, with our gpa variable, if we want only the 1st and 3rd cases, we could 

type: 

 
gpa = c(2.9, 3.0, 3.6, 3.2, 3.9, 3.4, 2.3, 2.8) 

gpa[c(1,3)] 

 

to get a new variable of just 2.9 and 3.6.  For example, if we wanted to take a random sample of 10 

countries from all the 213 countries in the world, because Country within the dataset AllCountries lists 

the country names identifying each case, we could use 

 
AllCountries$Country[sample(1:213, 10)] 

 

This is useful if you have the case identifiers for the whole population, but not the data.   

 

If you want to take a random sample from an entire dataset, indicate which rows and which columns 

you want within the square brackets, separated by a comma:  

 
data[rows, columns] 

 

So to take a random sample of 10 countries along with all the associated variables in the AllCountries 

dataset, we could use 

 
AllCountries[sample(1:213, 10), ] 

 

Notice the only difference when sampling a dataset versus a single column is the comma after the 

sample() command. 

 

 

Randomized Experiment 
 

If you want to randomize a sample into two different treatment groups for a randomized experiment, 

you can take a random sample from the whole sample to be the treatment group, and the rest of the 

sample would then go in the control group.  
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Using R in Chapter 2 
 

One Categorical (x) 

Frequency table 

Proportion in group A 

Pie chart 

Bar chart 

 

table(x) 

mean(x == "A") 

pie(table(x)) 

barplot(table(x)) 

Two Categorical (x1, x2) 

Two-way table 

Difference in proportions 

    of x1 in group A by x2 

Segmented bar chart  

Side-by-side bar chart 

 

table(x1, x2) 

diff(by(x1,x2,function(o) mean(o=="A"))) 

 

barplot(table(x1, x2), legend=TRUE) 

barplot(table(x1,x2),legend=TRUE,beside=TRUE) 

One Quantitative (y) 

Mean 

Median 

Standard deviation 

5-Number summary 

Percentile 

Histogram 

Boxplot 

 

mean(y)    #for missing data: na.rm=TRUE 

median(y)  #for missing data: na.rm=TRUE 

sd(y)      #for missing data: na.rm=TRUE 

summary(y) 

quantile(y, 0.05) 

hist(y) 

boxplot(y) #ylab="y-axis label" 

One Quantitative (y) and 

One Categorical (x) 

Means by group 

Difference in means 

S.D. by group 

Side-by-side boxplots 

 

 

by(y, x, mean) #for missing data: na.rm=TRUE 

diff(by(y, x, mean)) 

by(y, x, sd) 

boxplot(y ~ x) #ylab="y-axis label" 

Two Quantitative (y1, y2) 

Scatterplot 

Correlation 

Linear Regression 

 

plot(y1, y2) 

cor(y1, y2) #missing data: use="complete.obs" 

lm(response ~ explanatory) 

Time Series Plot 

y1 = time variable 

plot(y1, y2, type="o")  

 

Additional Variables 

Scatterplot of y1, y2 

Point size: y3 

Points colored by x1 

Point symbol: x2 

Broken down by: x3 

#uses ggplot2 package (much easier) 

install.packages(ggplot2) 

library(ggplot2) 

qplot(y1, y2, size=y3, colour=x1, shape=x2, 

facet=~x3)  

 

Example – Student Survey 
 

To illustrate these commands, we’ll explore the StudentSurvey data.  We load the data, attach it, and 

use head() to see what the data looks like: 
 

library(Lock5Data) 

data(StudentSurvey) 

attach(StudentSurvey) 
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head(StudentSurvey) 
 

The following are commands we could use to explore each of the following variables or pairs of 

variables.  They are not the only commands we could use, but illustrate some possibilities.  

 

Award preferences (one categorical variable): 
 

table(Award) 

barplot(table(Award)) 

 

Award preferences by gender (two categorical variables): 

 
table(Award, Gender) 

barplot(table(Award, Gender), legend=TRUE) 

 

Pulse rate (one quantitative variable): 

 
summary(Pulse) 

hist(Pulse) 

 

Hours of exercise per week by award preference (one quantitative and one categorical variable): 

 
by(Pulse, Award, mean) 

boxplot(Pulse~Award) 

 

Pulse rate and SAT score (two quantitative variables): 

 
plot(Pulse, SAT) 

cor(Pulse, SAT) 

lm(SAT~Pulse) 

 

Missing Data 
 

You may notice that if you try to do some of these commands on certain variables, you get NA for a 

result.  This often means there are some missing values in the data, which R codes as NA.  To calculate 

the average avoiding missing values, use the argument na.rm=TRUE: 
 

mean(Exercise, na.rm=TRUE) 

by(Exercise, Award, mean, na.rm=TRUE) 

 

For correlation a similar problem exists, but the fix just takes a different argument.  To calculate the 

correlation between SAT score and GPA (for which there are missing values), use 
 

cor(SAT, GPA, use = "complete.obs") 

 

More Details for Plots 
 

If you want to get a bit fancier, you can add axis labels and titles to your plots.  This is especially 

useful for including units, or if your variable names are not self-explanatory.  You can specify the x-
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axis label with xlab, the y-axis label with ylab, and a title for the plot with main.  For example, 

below would produce a labeled scatterplot of height versus weight: 

 
plot(Height, Weight, xlab = "Height (in inches)", ylab = "Weight 

(pounds)", main = "Scatterplot") 

 

These optional labeling arguments work for any graph produced. 

 

Additional Variables (Section 2.7) 
 

Let’s add additional variables to the basic scatterplot. This can be done in base R, but is a bit tricky 

(particularly to get the legend correct), so we instead use the ggplot2 package.  We first need to install 

and load the package: 

 
install.packages(ggplot2) 

library(ggplot2) 

 

Below we can create a scatterplot of Height and Weight, with points colored by Gender, sized by 

hours of Exercise, symbol determined by Award, and broken down by Year: 
 

qplot(Height, Weight, colour=Gender, shape=Award, size=Exercise, 

facets=~Year, data=StudentSurvey) 

 

Data over Time 
 

Data over time can be plotted just as you would plot a normal scatterplot, but with the extra argument 

type = “o” for overlaid points and a line connecting them, or type = “l” for just the line.   

 

The dataset CarbonDioxide gives Carbon Dioxide concentration in the atmosphere every year from 

1960-2010.  We can create a time series plot with 

 
data(CarbonDioxide) #loads the data 

attach(CarbonDioxide) 

plot(Year, CO2, type="o") 
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Using R in Chapter 3 
 

Generating a 

Bootstrap Distribution 

b = 10000 #number of bootstrap statistics  

boot.dist = rep(NA, b) 

for (i in 1:b) { 

    boot.sample = sample(n, replace=TRUE) 

    boot.dist[i] = statistic(y[boot.sample]) 

} 

Using a  

Bootstrap Distribution 

hist(boot.dist) 

quantile(boot.dist, c(0.025, 0.975)) 

sd(boot.dist) 

 

To generate a bootstrap confidence interval we first learn how to generate one bootstrap statistic, then 

how to repeat this procedure many times to generate an entire bootstrap distribution, and then how to 

use the bootstrap distribution to calculate a confidence interval. 

 

One Bootstrap Statistic 

 
To generate a bootstrap distribution we first have to be comfortable generating a single bootstrap 

statistic.  To do this, we sample with replacement from the original sample, using a sample size equal 

to the original sample, and then compute the statistic of interest on this bootstrap sample.  We create 

boot.sample to be a random sample of n (the sample size) integers between 1 and n, sampled with 

replacement: 

 
boot.sample = sample(n, replace=TRUE) 

 

For example,  

 
sample(4, replace = TRUE) 

 

could yield 2, 2, 1, 4.  To use this to get a bootstrap sample from our variable, we use square 

brackets, [ ] to select those cases from the variable.  For example, if we wanted to create a bootstrap 

sample of Atlanta commute times (Time), which has 500 values originally, we would use 

 
boot.sample = sample(500, replace=TRUE) 

Time[boot.sample] 

 

Lastly, we compute our statistic of interest on this bootstrap sample.  For example, for the mean 

Atlanta commute time we would use 
 

mean(Time[boot.sample]) 

If we instead were doing a correlation between Distance and Time, we would use 

 
cor(Distance[boot.sample], Time[boot.sample]) 
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For Loop 

 

A for loop is a convenient way to repeat a procedure many times, without having to type it over and 

over again.  The code 

 
for (i  in 1:5) { } 

 

tells the computer to do whatever is inside of the brackets 5 times, once with i = 1, once with i = 2, etc. 

up to i = 5.  We use for (i in 1:b), where b is the number of bootstrap statistics we want 

(usually 10,000 is sufficient). 

 

We want to save the bootstrap statistic from every iteration of the for loop (for every i).  To do this we 

first need to create a new object to save these results in: 

 
boot.dist = rep(NA, b) 

 

This creates a set of b NA values which will become the bootstrap distribution.  Within the for loop,  

 
boot.dist[i] = statistic(boot.y, boot.x) 

 

tells each iteration of the for loop to fill in the ith value of boot.dist with the bootstrap statistic from that 

iteration.  When the for loop has finished, boot.dist has b different bootstrap statistics. 

 

Before continuing, let's look at a simple for loop example: 

 
result = rep(NA, 5) 

for (i in 1:5) { 

  result[i] = i + 2 

} 

 

After the for loop runs, result would be 3, 4, 5, 6, 7, because the for loop when i = 1 would 

fill in the 1st value of result with i + 2 = 1 + 2 = 3, when i = 2 it would fill in the 2nd value of result with 

i + 2 = 2 + 2 = 4, etc., up to i = 5. 

 

 

Using the Bootstrap Distribution 
 

Once you have the bootstrap distribution, you should graph it to make sure it is approximately 

symmetric.  Assuming it is, you have two options for computing a 95% confidence interval: 
 

1. Compute the standard error of the statistic by taking the standard deviation of the bootstrap 

statistics and then use statistic  2SE. 

 

2. Find the endpoints that correspond to the middle 95% of the bootstrap distribution.  For the 

middle 95%, we want the 2.5% in each tail, so the 0.025 and 0.975 percentiles (for other 

confidence levels, just replace 0.025 and 0.975 with the appropriate percentiles): 
 

quantile(boot.dist, c(0.025, 0.975)) 
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Example: Bootstrap CI for a Correlation 

 
Let's compute a 95% confidence interval for the correlation between Distance and Time for 

AtlantaCommutes.  Load and attach the data: 

 
library(Lock5Data) 

data(CommuteAtlanta) 

attach(CommuteAtlanta) 

 

Create a bootstrap distribution: 

 
b = 10000  

boot.dist = rep(NA, b) 

for (i in 1:b) { 

    boot.sample = sample(500, replace=TRUE) 

    boot.dist[i] = cor(Distance[boot.sample], Time[boot.sample]) 

} 

 

Graph the bootstrap distribution to check for symmetry: 

 
hist(boot.dist) 

 

There is possibly a slight left skew, but nothing too concerning.   

 

Create a 95% confidence interval using the standard error: 

 
se = sd(boot.dist) 

cor(Distance, Time) - 2*se 

cor(Distance, Time) + 2*se 

 

Although it's redundant to do both, for illustration we also use the percentile method: 

 
quantile(boot.dist, c(0.025, 0.975)) 
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Using R in Chapter 4 

 
Generating a 

Randomization Distribution 

b = 10000 #number of randomization statistics  

rand.dist = rep(NA, b) 

for (i in 1:b) rand.dist[i] = rand.statistic 

Randomization Statistic: 

Proportion 

 

Mean 

 

 

 

Shuffle one variable (x) 

 
rbinom(1, n, 0.5) #change 0.5 to null value 

 

boot.samp = sample(n, replace=TRUE) 

mean(y[boot.samp] + shift) #shift is amount to 

shift original data to make null true 

 

sample(x) #randomly permutes x 

Finding p-value: 

Proportion  statistic 

Proportion ≥ statistic 

#double for two-sided Ha 

mean(rand.dist <= statistic)  

mean(rand.dist >= statistic)  

 

The general idea with the for loop is the same as we learned in Chapter 3 with bootstrapping, 

although if there is only one line of code within the for loop, we put it on one line for simplicity.  For 

b iterations we calculate a randomization statistic, each time storing it as a value in rand.dist.   

 

Shuffling One Variable 
 

In many hypothesis tests, we generate a randomization sample by shuffling one of the two variables 

(the explanatory variable if the data comes from a randomized experiment).  For example, suppose we 

want to do a hypothesis test to see if caffeine increases finger tapping rate, based on Data 4.6. 
 

We load and attach the dataset CaffeineTaps, and see that the explanatory variable is Group and the 

response variable is Taps.  To randomly shuffle the explanatory variable, we again use sample.  If 

you sample a variable without specifying the sample size and without replacement, R randomly 

shuffles (permutes) the variable.  So to shuffle Group we use 

 
sample(Group) 

 

For this problem we want to calculate the difference in mean tap rate for the shuffled groups: 

 
diff(by(Tap, sample(Group), mean)) 

 

If we instead wanted a difference in proportions or correlation, we would calculate the statistic as 

always, just using the shuffled group instead of the actual group variable. 

 

Now that we know how to calculate one randomization statistic, and know how to do a for loop from 

Chapter 3, creating a randomization distribution is easy! 
 

b = 10000  

rand.dist = rep(NA, b) 

for (i in 1:b) rand.dist[i] = diff(by(Tap, sample(Group), mean)) 
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To compute a p-value from this randomization distribution, we want the proportion of randomization 

statistics above the observed statistic (because we want to see if caffeine increases tap rate): 

 
originalstat = diff(by(Tap, Group, mean)) 

mean(rand.dist >= originalstat) 

 

Test for a Single Variable 
 

Doing tests for a single variable is a bit different, because there is not an explanatory variable to 

shuffle.  Here are two examples, one for a proportion, and one for a mean. 

 

1. Dogs and Owners.  16 out of 25 dogs were correctly paired with their owners, is this evidence 

that the true proportion is greater than 0.5?   In R, you can simulate flipping 25 coins and 

counting the number of heads with 

 
rbinom(1, 25, 0.5) 

 

(for null proportions other than 0.5, just change the 0.5 above accordingly).  Therefore, we can 

create a randomization distribution with 

 
b = 10000  

rand.dist = rep(NA, b) 

for (i in 1:b) rand.dist[i] = rbinom(1, 25, 0.5) 

 

The alternative is upper-tailed, so we compute a p-value as the proportion above 16/25: 

 

mean(rand.dist >= 16/25) 

 

2.  Body Temperature.  Is a sample mean of 98.26F based on 50 people evidence that the true 

average body temperature in the population differs from 98.6F?  To answer this we create a 

randomization distribution by bootstrapping from a sample that has been shifted to make the 

null true, so we add 0.34 to each value.  We can create the corresponding randomization 

distribution with 

 
b = 10000  

rand.dist = rep(NA, b) 

NullTemp=BodyTemp+0.34 

for (i in 1:b) { 

   boot.samp = sample(50, replace=TRUE) 

   rand.dist[i] = mean(NullTemp[boot.samp]) 

} 

In this case we have a two-sided Ha, so calculate the p-value as the proportion in the smaller tail 

beyond the observed statistic (in this case  because 98.26 is less than 98.6), and double it: 

 

2*mean(rand.dist <= 98.26) 
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Using R in Chapter 5 

 
Standard Normal Distribution: 

Find a percentile  

Find the area below z 

Find the area above z 

 

qnorm(0.10)  

pnorm(z) 

pnorm(z, lower.tail=FALSE) 

Any Normal Distribution 

Find a percentile 

Find the area below x 

Find the area above x 

 

qnorm(0.10,mean,stddev) 

pnorm(x,mean,stddev) 

pnorm(x,mean,stddev,lower.tail=FALSE) 

 
Example 1:  Find z* for a 90% confidence interval. 

 
We want the middle 90% of the normal distribution, so want 5% in each tail, so need to find the 5th and 

95th percentiles: 

 
qnorm(0.05) 

qnorm(0.95) 

 

Example 2:  Find a p-value when z = 1.5, and the alternative is upper-tailed. 

 
Because Ha is upper tailed, we find the area in the standard normal distribution above 1.5: 

 
pnorm(1.5, lower.tail=FALSE) 

 

 

Example 3:  Find the area below 60 for a normal distribution with mean 75 and 

standard deviation 12. 

 
pnorm(60,75,12) 
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Using R in Chapter 6 

 
Normal Distribution: 

Find a percentile  

Find the area below z 

Find the area above z 

 

qnorm(0.10)  

pnorm(z) 

pnorm(z, lower.tail=FALSE) 

t-Distribution: 

Find a percentile  

Find the area below t 

Find the area above t 

 

qt(0.10, df)  

pt(t, df, lower.tail=TRUE) 

pt(t, df, lower.tail=FALSE) 

Inference for Proportions: 

Single proportion 

Difference in proportions 

 

prop.test(count, n, p0) #delete p0 for intervals 

prop.test(c(count1, count2), c(n1, n2)) 

Inference for Means: 

Single mean 

Difference in means 

 

t.test(y, mu = mu0) #delete mu0 for intervals 

t.test(y ~ x) 

Using prop.test or t.test 

For p-values 

For confidence intervals 

 

#alternative = "two.sided", "less", "greater" 

#conf.level = 0.95 or desired confidence level 

 
There are two ways of using R to compute confidence intervals and p-values using the normal and t-

distributions: 

 

1. Use the formulas in the book and qnorm, qt, pnorm, and pt.   

2. Use prop.test and t.test on the raw data without using any formulas 

 

The two methods should give very similar answers, but may not match exactly because prop.test 

and t.test do things slightly more complicated than what you have learned (continuity correction 

for proportions, and a more complicated algorithm for degrees of freedom for difference in means). 

 

The commands prop.test and t.test give both confidence intervals and p-values.  For 

confidence intervals, the default level is 95%, but other levels can be specified with conf.level.  

For p-values, the default is a two-tailed test, but the alternative can be changed by specifying either 

alternative = "less" or alternative = "greater". 

 

Using Option 1 directly parallels the code in Chapter 5, so we refer you to the Chapter 5 examples.  

Here we just illustrate the use of prop.test and t.test. 

 

Example 1:  In a recent survey of 800 Quebec residents, 224 thought that Quebec should separate 

from Canada.  Give a 90% confidence interval for the proportion of Quebecers who would like Quebec 

to separate from Canada. 
 

prop.test(224, 800, conf.level=0.90) 

 

Example 2: Test whether caffeine increases tap rate (based on CaffeineTaps data). 
 

t.test(Tap~Group, alternative = "greater")  
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Using R in Chapter 7 

 
Chi-Square Distribution 

Find the area above 2 

 

pchisq(chisquare, df, lower.tail=FALSE) 

Chi-Square Test 

Goodness-of-fit 

 

Test for association 

 

chisq.test(table(x)) #if null probabilities not 

equal, use p = c(p1, p2, p3) to specify 

chisq.test(table(x1, x2)) 

Randomization Test 

Goodness-of-fit 

Test for association 

 

chisq.test(table(x), simulate.p.value=TRUE) 

chisq.test(table(x1, x2), simulate.p.value=TRUE) 

 
Option 1: Use formula to calculate chi-square statistic and use pchisq 

 
If we get 2 = 3.1 and the degrees of freedom are 2, we would calculate the p-value with 

 
pchisq(3.1, 2, lower.tail=FALSE)  

 

Option 2: Use chisq.test on raw data 
 

1. Goodness of Fit.  Use the data in APMultipleChoice to see if all five choices (A, B, C, D, E) 

are equally likely: 
 

chisq.test(table(Answer)) 

 

2. Test for Association. Use the data in StudentSurvey to see if type of award preference is 

associated with gender: 

 
chisq.test(table(Award, Gender)) 

 

Randomization Test 

 
If the expected counts within any cell are too small, you should not use the chi-square distribution, but 

instead do a randomization test.  If you use chisq.test with small expected counts cell, R helps 

you out by giving a warning message saying the chi-square approximation may be incorrect. 

 

If the sample sizes are too small to use a chi-squared distribution, you can do a randomization test with 

the optional argument simulate.p.value within the command chisq.test.  This tells R to 

calculate the p-value by simulating the distribution of the 2 statistic, assuming the null is true, rather 

than compare it to the theoretical chi-square distribution. 

 

For example, for a randomization test for an association between Award and Gender: 
 

chisq.test(table(Award, Gender), simulate.p.value=TRUE) 
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Using R in Chapter 8 

 
F Distribution 

Find the area above F 

 

pf(F, df, lower.tail=FALSE) 

Analysis of Variance summary(aov(y ~ x)) 

Pairwise Comparisons pairwise.t.test(y, x, p.adjust="none") 

 
As with t-tests and chi-square tests, one option is to calculate the F-statistic by hand, and then compare 

it to the F distribution using pf.  The (much easier) option is to use R's built in analysis of variable 

function, aov. 

 

Analysis of Variance 

 
Let's test whether the average number of ants that feed on a sandwich differs by type of filling, using 

data from SandwichAnts (Data 8.1).   
 

We can calculate the sample means in each group, visualize the data, and check the conditions for 

ANOVA with  

 
by(Ants, Filling, mean) 

boxplot(Ants ~ Filling) 

by(Ants, Filling, sd) 

table(Filling) 

 

In the sample, we see that the most ants came to the ham & pickles sandwich, and the least to the 

vegemite.  The sample standard deviations within each group are close enough to proceed.  The sample 

sizes are very small, so we should proceed with caution, but looking at the boxplots we see the data 

appear to be at least symmetrically distributed within each group, without any outliers, so we proceed. 

 

We can calculate the entire ANOVA table directly with 

 
summary(aov(Ants ~ Filling)) 

 

 

Pairwise Comparisons 
 

Finding the overall ANOVA significant, we may want to test individual pairwise comparisons.  We 

can test all pairwise comparisons with 

 
pairwise.t.test(Ants, Filling, p.adjust = "none") 

 

This gives us the p-value corresponding to each pairwise comparison.  The optional argument 

p.adjust = "none" tells R to give the raw p-values and not adjust for multiple comparisons.  If 

you leave off this argument R will increase the p-values to account for multiple comparisons, but the 

details here are beyond the scope of this text. 
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Using R in Chapter 9 
 

Simple Linear Regression 

Plot the data 

Fit the model 

Give model output 

Add regression line to plot 

 

plot(y ~ x) # y is the response (vertical) 

lm(y ~ x)   # y is the response) 

summary(model) 

abline(model) 

Inference for Correlation cor.test(x, y) 

#alternative = "two.sided", "less", "greater" 

Prediction 

Calculate predicted values 

Calculate confidence intervals 

Calculate prediction intervals 

Prediction for new data 

 

predict(model) 

predict(model, interval = "confidence") 

predict(model, interval = "prediction") 

predict(model, as.data.frame(cbind(x=1))) 

 

Let's load and attach the data from RestaurantTips to regress Tip on Bill.  Before doing regression, 

we should plot the data to make sure using simple linear regression is reasonable: 
 

plot(Tip~Bill)    #Note:  plot(Bill, Tip) does the same 
 

The trend appears to be approximately linear.  There are a few unusually large tips, but no extreme 

outliers, and variability appears to be constant as Bill increases, so we proceed.  We fit the simple 

linear regression model, saving it under the name mod (short for model - you can call it anything you 

want).  Once we fit the model, we use summary to see the output: 
 

mod = lm(Tip ~ Bill) 

summary(mod) 

 

Results relevant to the intercept are in the (Intercept) row and results relevant to the slope are in the 

Bill (the explanatory variable) row.  The estimate column gives the estimated coefficients, the std. 

error column gives the standard error for these estimates, the t value is simply estimate/SE, and the p-

value is the result of a hypothesis test testing whether that coefficient is significantly different from 0.  
 

We also see the standard error of the error as "Residual standard error" and R2  as "Multiple R-

squared".  The last line of the regression output gives details relevant to the ANOVA table: the F-

statistic, degrees of freedom, and p-value. 

 

After creating a plot, we can add the regression line to see how the line fits the data: 
 

abline(mod) 

 

 Suppose a waitress at this bistro is about to deliver a $20 bill, and wants to predict her tip.  She can get 

a predicted value and 95% (this is the default level, change with level) prediction interval with 
 

predict(mod,as.data.frame(cbind(Bill = 20)),interval = "prediction") 

 

Lastly, we can do inference for the correlation between Bill and Tip: 
 

cor.test(Bill, Tip)  
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Using R in Chapter 10 

 
Multiple Regression 

Fit the model 

Give model output 

 

lm(y ~ x1 + x2) 

summary(model) 

Residuals 

Calculate residuals 

Residual plot 

Histogram of residuals 

 

model$residuals 

plot(predict(model), model$residuals) 

hist(model$residuals) 

Prediction 

Calculate predicted values 

Calculate confidence intervals 

Calculate prediction intervals 

Prediction for new data 

 

predict(model) 

predict(model, interval = "confidence") 

predict(model, interval = "prediction") 

predict(model,as.data.frame(cbind(x1=1,x2=3))) 

 

Multiple Regression Model 

 
We'll continue the RestaurantTips example, but include additional explanatory variables: number in 

party (Guests), and whether or not they pay with a credit card (Credit = 1 for yes, 0 for no).   

 

We fit the multiple regression model with all three explanatory variables, call it tip.mod, and 

summarize the model: 

 
tip.mod = lm(Tip ~ Bill + Guests + Credit) 

summarize(tip.mod) 

 

This output should look very similar to the output from Chapter 9, except now there is a row 

corresponding to each explanatory variable.   

 

Conditions 
 

To check the conditions, we need to calculate residuals, make a residual versus fitted values plot, and 

make a histogram of the residuals: 

 
plot(tip.mod$fit, tip.mod$residuals) 

hist(tip.mod$residuals) 

 
Categorical Variables 

 
While Credit was already coded with 0/1 here, this is not necessary for R.  You can include any 

explanatory variable in a multiple regression model, and R will automatically create corresponding 0/1 

variables.  For example, if you were to include gender coded as male/female, R would create a variable 

GenderMale that is 1 for males and 0 for females.  The only thing you should not do is include a 

categorical variable with more than two levels that are all coded with numbers, because R will treat 

this as a quantitative variable. 
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R Commands: Quick Reference Sheet 
 

CHAPTER 1 
Loading Data 

Load a dataset from a .csv file 

Load a dataset from the textbook 

Type in a variable 

 

dataname = read.csv(file.choose()) 

data(dataname) 

variablename = c(3.2, 3.3, 3.1) 

Viewing Data 

See the whole dataset, dataname 

See the first 6 rows of a dataset 

Finding the number of cases and variables 

 

dataname 

head(dataname) 

dim(dataname) 

Variables 

Seeing the variable names in a dataset 

Extract a variable from a dataset 

 

names(dataname) 

dataname$variablename 

Random Sample 

Generate n random integers up to max 

 

sample(1:max, n) 

 

CHAPTER 2 
One Categorical (x) 

Frequency table 

Proportion in group A 

Pie chart 

Bar chart 

 

table(x) 

mean(x == “A”) 

pie(table(x)) 

barplot(table(x)) 

Two Categorical (x1, x2) 

Two-way table 

Difference in proportions 

    of x1 in group A by x2 

Segmented bar chart  

Side-by-side bar chartt 

 

table(x1, x2) 

diff(by(mean(x1,x2,function(o) mean(o==“A”))) 

 

barplot(table(x1, x2), legend=TRUE) 

barplot(table(x1,x2),legend=TRUE,beside=TRUE) 

One Quantitative (y) 

Mean 

Median 

Standard deviation 

5-Number summary 

Percentile 

Histogram 

Boxplot 

 

mean(y)    #for missing data: na.rm=TRUE 

median(y)  #for missing data: na.rm=TRUE 

sd(y)      #for missing data: na.rm=TRUE 

summary(y) 

quantile(y, 0.05) 

hist(y) 

boxplot(y) #ylab="y-axis label" 

One Quantitative (y) and 

One Categorical (x) 

Means by group 

Difference in means 

S.D. by group 

Side-by-side boxplots 

 

 

by(y, x, mean) #for missing data: na.rm=TRUE 

diff(by(y, x, mean)) 

by(y, x, sd) 

boxplot(y ~ x) #ylab="y-axis label" 

Two Quantitative (y1, y2) 

Scatterplot 

Correlation 

Linear Regression 

 

plot(y1, y2) 

cor(y1, y2) #missing data: use="complete.obs" 

lm(response ~ explanatory) 
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Time Series Plot 

y1 = time variable 

plot(y1, y2, type="o")  

 

Additional Variables 

Scatterplot of y1, y2 

Point size: y3 

Points colored by x1 

Point symbol: x2 

Broken down by: x3 

#uses ggplot2 package (much easier) 

install.packages(ggplot2) 

library(ggplot2) 

qplot(y1, y2, size=y3, colour=x1, shape=x2, 

facet=~x3)  

CHAPTER 3 
Generating a 

Bootstrap Distribution 

b = 10000 #number of bootstrap statistics  

boot.dist = rep(NA, b) 

for (i in 1:b) { 

    boot.sample = sample(n, replace=TRUE) 

    boot.dist[i] = statistic(y[boot.sample]) 

} 

Using a  

Bootstrap Distribution 

hist(boot.dist) 

quantile(boot.dist, c(0.025, 0.975)) 

sd(boot.dist) 

 

CHAPTER 4 
Generating a 

Randomization Distribution 

b = 10000 #number of randomization statistics  

rand.dist = rep(NA, b) 

for (i in 1:b) rand.dist[i] = rand.statistic 

Randomization Statistic: 

Proportion 

 

Mean 

 

 

 

Shuffle one variable (x) 

 
rbinom(1, n, 0.5) #change 0.5 to null value 

 

boot.samp = sample(n, replace=TRUE) 

mean(y[boot.samp] + shift) #shift is amount to 

shift original data to make null true 

 

sample(x) #randomly permutes x 

Finding p-value: 

Proportion  statistic 

Proportion ≥ statistic 

#double for two-sided Ha 

mean(rand.dist <= statistic)  

mean(rand.dist >= statistic)  

 

CHAPTER 5 
Standard Normal Distribution: 

Find a percentile  

Find the area below z 

Find the area above z 

 

qnorm(0.10)  

pnorm(z) 

pnorm(z, lower.tail=FALSE) 

 

CHAPTER 6 
t-Distribution: 

Find a percentile  

Find the area below t 

Find the area above t 

 

qt(0.10, df)  

pt(t, df) 

pt(t, df, lower.tail=FALSE) 

Inference for Proportions:  
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Single proportion 

Difference in proportions 

prop.test(count, n, p0) #delete p0 for intervals 

prop.test(c(count1, count2), c(n1, n2)) 

Inference for Means: 

Single mean 

Difference in means 

 

t.test(y, mu = mu0) #delete mu0 for intervals 

t.test(y ~ x) 

Using prop.test or t.test 

For p-values 

For confidence intervals 

 

#alternative = "two.sided", "less", "greater" 

#conf.level = 0.95 or desired confidence level 

 

CHAPTER 7 
Chi-Square Distribution 

Find the area above 2 

 

pchisq(chisquare, df, lower.tail=FALSE) 

Chi-Square Test 

Goodness-of-fit 

 

Test for association 

 

chisq.test(table(x)) #if null probabilities not 

equal, use p = c(p1, p2, p3) to specify 

chisq.test(table(x1, x2)) 

Randomization Test 

Goodness-of-fit 

Test for association 

 

chisq.test(table(x), simulate.p.value=TRUE) 

chisq.test(table(x1, x2), simulate.p.value=TRUE) 

 

CHAPTER 8 
F Distribution 

Find the area above F 

 

pf(F, df, lower.tail=FALSE) 

Analysis of Variance summary(aov(y ~ x)) 

Pairwise Comparisons pairwise.t.test(y, x, p.adjust="none") 

 

CHAPTER 9 
Simple Linear Regression 

Plot the data 

Fit the model 

Give model output 

Add regression line to plot 

 

plot(y ~ x) # y is the response (vertical) 

lm(y ~ x)   # y is the response) 

summary(model) 

abline(model) 

Inference for Correlation cor.test(x, y) 

#alternative = "two.sided", "less", "greater" 

Prediction 

Calculate predicted values 

Calculate confidence intervals 

Calculate prediction intervals 

Prediction for new data 

 

predict(model) 

predict(model, interval = "confidence") 

predict(model, interval = "prediction") 

predict(model, as.data.frame(cbind(x=1))) 

 

CHAPTER 10 
Multiple Regression 

Fit the model 

Give model output 

 

lm(y ~ x1 + x2) 

summary(model) 

Residuals 

Calculate residuals 

 

model$residuals 

plot(predict(model), model$residuals) 
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Residual plot 

Histogram of residuals 

hist(model$residuals) 

Prediction 

Calculate predicted values 

Calculate confidence intervals 

Calculate prediction intervals 

Prediction for new data 

 

predict(model) 

predict(model, interval = "confidence") 

predict(model, interval = "prediction") 

predict(model,as.data.frame(cbind(x1=1,x2=3))) 

 


